Mo Logo [Home] [Lexikon] [Aufgaben] [Tests] [Kurse] [Begleitmaterial] [Hinweise] [Mitwirkende] [Publikationen]

Mathematik-Online-Lexikon:

Absolut konvergente Reihen


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Übersicht

Konvergiert

$\displaystyle \sum_{n=0}^\infty \vert a_n\vert,$

so bezeichnet man die Reihe $ \sum \limits_{n=0}^{\infty} a_n $ als absolut konvergent.

Aus dieser stärkeren Form der Konvergenz folgt, dass die Reihe auch bei einer beliebigen Änderung der Summationsreihenfolge konvergent ist.

Erläuterung:


[Verweise]

  automatisch erstellt am 19.  8. 2013