Mo Logo [Home] [Lexikon] [Aufgaben] [Tests] [Kurse] [Begleitmaterial] [Hinweise] [Mitwirkende] [Publikationen]

Mathematik-Online-Lexikon:

Hauptsatz für Doppelintegrale


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Übersicht

Ist

$\displaystyle t\mapsto(x(t),y(t)),\quad a\le t\le b\,,
$

eine entgegen dem Uhrzeigersinn orientierte Parametrisierung der Randkurve eines regulären ebenen Bereichs $ D$, so gilt

$\displaystyle \int\limits_D f_x = \int\limits_a^b f(x(t),y(t))y^\prime(t)
\,dt
$

und

$\displaystyle \int\limits_D f_y = -\int\limits_a^b f(x(t),y(t))x^\prime(t)\,dt\,.
$

siehe auch:


[Beispiele]

  automatisch erstellt am 19.  8. 2013