Mo Logo [Home] [Lexikon] [Aufgaben] [Tests] [Kurse] [Begleitmaterial] [Hinweise] [Mitwirkende] [Publikationen]

Mathematik-Online-Aufgabensammlung:

Interaktive Aufgabe 1698: Bedingung für ganzzahlige Nullstellen bei einem Polynom


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Sei $ p$ ein Polynom dritten Grades der Form: $ p(x)=x^3-a^2x$.
  1. Welche der angegebenen Bedingungen an $ a$ garantiert, dass $ p$ nur ganzzahlige Nullstellen hat?

    $ a\in\lbrace 0\rbrace$, $ a \in \mathbb{N}_0$, $ a \in \mathbb{N}$, $ a \in \mathbb{Z}$, $ a \in \mathbb{Z}\setminus \lbrace 0\rbrace $, $ a \in \mathbb{R}$, $ a \in \mathbb{R}\setminus \lbrace 0\rbrace $.

  2. Welche der angegebenen Bedingungen an $ a$ garantiert, dass $ p$ nur nicht-negative Nullstellen hat?

    $ a\in\lbrace 0\rbrace$, $ a \in \mathbb{N}_0$, $ a \in \mathbb{N}$, $ a \in \mathbb{Z}$, $ a \in \mathbb{Z}\setminus \lbrace 0\rbrace $, $ a \in \mathbb{R}$, $ a \in \mathbb{R}\setminus \lbrace 0\rbrace $.

  3. Welche der angegebenen Bedingungen an $ a$ garantiert, dass $ p$ keine mehrfachen Nullstellen hat?

    $ a\in\lbrace 0\rbrace$, $ a \in \mathbb{N}_0$, $ a \in \mathbb{N}$, $ a \in \mathbb{Z}$, $ a \in \mathbb{Z}\setminus \lbrace 0\rbrace $, $ a \in \mathbb{R}$, $ a \in \mathbb{R}\setminus \lbrace 0\rbrace $.


   
(Autor: Schülerzirkel)

siehe auch:


  automatisch erstellt am 10.  8. 2017