Mo Logo [Home] [Lexikon] [Aufgaben] [Tests] [Kurse] [Begleitmaterial] [Hinweise] [Mitwirkende] [Publikationen]

Mathematik-Online-Aufgabensammlung:

Interaktive Aufgabe 831: Tangente an Ellipse


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Durch die Menge aller Punkte $ (z_1,z_2)$ mit

$\displaystyle \frac{p_1z_1}{a^2} + \frac{p_2z_2}{b^2} = 1 $

ist die Tangente an die Ellipse mit der Gleichung

$\displaystyle \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $

im Ellipsenpunkt $ P=(p_1,p_2)$ gegeben.

Gegeben ist nun eine Ellipse mit der Gleichung

$\displaystyle 9\cdot x^2 + 16 \cdot y^2 = 144 .$

In welchem Punkt $ Q$ der Ellipse hat die Tangente an die Ellipse die Steigung $ m=1$?

keine Angabe , $ Q=(\frac{12}{5},-\frac{4}{5}))$ , $ Q=(-\frac{16}{5},\frac{9}{5})$ , $ Q=(\frac{3}{8},2)$ .
   

(Autor: Clemens Förster)

[Verweise]

  automatisch erstellt am 10.  8. 2017