Lineare Algebra und Analytische Geometrie II

Aufgabe 1 (mündlich) Sei $A \in \mathbb{C}^{4\times 4}$ und λ ein vierfacher Eigenwert von A. Welches Aussehen kann die Jordannormalform von A annehmen? Kann man anhand der geometrischen Vielfachheit von λ entscheiden, welcher Fall eintritt?

Aufgabe 2 (schriftlich) Sei A eine reelle symmetrische Matrix. Zeigen Sie:

- a) A ist genau dann positiv definit, wenn es eine reguläre Matrix T gibt, so dass T^tAT positiv definit ist.
- b) A ist genau dann positiv definit, wenn alle Eigenwerte von A positiv sind.

Aufgabe 3 (schriftlich) Bestimmen Sie die euklidische Normalform der Quadrik $Q \in \mathbb{R}^3$ mit Gleichung

$$x_1^2 + x_2^2 + 4x_3^2 + 6x_1x_2 + 12x_1x_3 + 4x_2x_3 + 8x_1 + 4x_2 - 2x_3 + 10 = 0.$$

Aufgabe 4 - **Aufbaukurs (schriftlich)** Zeigen Sie, dass die Translationen $T(n, \mathbb{R})$ einen Normalteiler von $AO(n, \mathbb{R})$ bilden mit

$$AO(n, \mathbb{R})/T(n, \mathbb{R}) \cong O(n, \mathbb{R}).$$

Abgabe der schriftlichen Aufgaben am 12. Juli in der Vorlesung.