Mo Logo [Home] [Lexikon] [Aufgaben] [Tests] [Kurse] [Begleitmaterial] [Hinweise] [Mitwirkende] [Publikationen]

Mathematik-Online-Kurs: Integralrechnung - Übungen - Partielle Integration, Substitution und spezielle Integranden

Stammfunktion und Berechnung von Integralen


[vorangehende Seite] [nachfolgende Seite] [Gesamtverzeichnis][Seitenübersicht]

Geben Sie eine Stammfunktion der folgenden Integranden an und berechnen Sie die Integrale.
a)     $ \displaystyle\int\limits_0^\pi \cos^2 x \sin x \, dx$                  b)     $ \displaystyle\int\limits_0^1 x^3\ln x \, dx$

Antwort:

a)
Stammfunktion:
$ a\cos^3x+c$          $ a\cos x+c$          $ a\sin^4x+c$          mit $ a=$

Wert des Integrals:

b)
Stammfunktion:
$ b_1x^{-1}\ln x+b_2x^{-1}+c$          $ b_1x^{3/2}\ln x+b_2x^{3/2}+c$          $ b_1x^4\ln x+b_2x^4+c$

mit $ b_1=$ ,         $ b_2=$

Wert des Integrals:
(auf vier Dezimalstellen gerundet)
  
[Andere Variante]
(Aus: Scheinklausur HM2 Höllig SS05)

[vorangehende Seite] [nachfolgende Seite] [Gesamtverzeichnis][Seitenübersicht]

  automatisch erstellt am 23.2.2017