Klausur zur HM3 (vertieft) für LRT und MaWi

Aufgabe 1. Bitte füllen Sie folgendes aus! (1 Punkt)

Name: Musterlösung	Matrikelnummer: Musterlösung
Vorname: Musterlösung	Studiengang: Musterlösung

Es gelten die üblichen Klausurbedingungen. Bitte beachten Sie folgende Hinweise:

- Bearbeitungszeit: 120 Minuten
- Erlaubte Hilfsmittel: 10 Seiten DIN A4 eigenhandgeschrieben
- Mobiltelefone und ähnliche Geräte müssen während der gesamten Klausur komplett ausgeschaltet bleiben und so verstaut sein, dass sie nicht sichtbar sind.
- Bearbeitungen mit Bleistift oder Rotstift sind nicht zulässig.
- Nutzen Sie die **Kästen** für Ihre Lösungen. Bei karierten Kästen sind Ergebnis und Rechenweg gefragt. Nebenrechnungen machen Sie auf Schmierpapier, das Sie nicht abgeben.
- Die Klausur enthält zu viele Punkte für 120 Minuten. Die Notenskala berücksichtigt dies. Ihr Vorteil: Sammeln Sie Punkte; wählen Sie zunächst Fragen, die Ihnen leicht fallen.

VIEL ERFOLG!

Den unteren Teil dieses Deckblattes bitte für Korrekturvermerke freilassen.

Aufgabe	1	2	3	4	5	6	7	Gesamt
Punkte	/1	/16	/8	/12	/10	/12	/7	/66

Erläuterung: Zur Nacharbeit dieser Klausur sind die Antworten ausgiebig erläutert. Ergebnisse und Rechnungen sind ausführlicher dargestellt, als in der Prüfung verlangt war. Möge es nützen!

Tipp für zukünftige Leser: Ihre Vorlesung und wöchentlichen Übungen erklären Ihnen diese wunderbaren Rechentechniken. Nutzen Sie dies, arbeiten Sie kontinuierlich mit, es lohnt sich!

Nützliche Werte und Formeln

• Tabellen der Exponentialfunktion und des Logarithmus

Ablesebeispiele: Für x=2 gilt $e^x\approx 7.39$. Für x=0.8 gilt $\ln(x)\approx -0.22$.

• Einige Stammfunktionen:

$$\int \frac{1}{1+x^2} dx = \tan^{-1}(x) + c$$

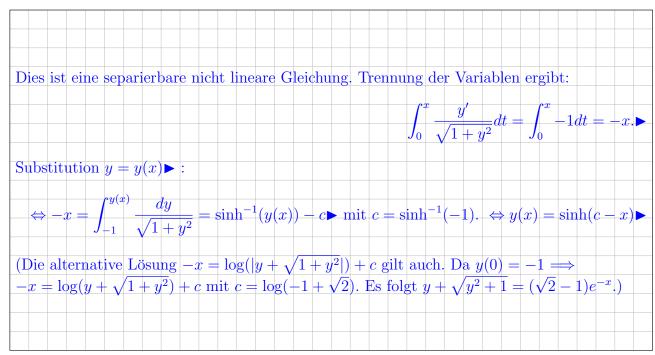
$$\int \frac{1}{\sqrt{1+x^2}} dx = \sinh^{-1}(x) + c$$

$$\int \frac{x}{1+x^2} dx = \frac{1}{2}\log(1+x^2) + c$$

$$\int \frac{x}{\sqrt{1+x^2}} dx = \sqrt{1+x^2} + c$$

Aufgabe 2. *Vermischtes* $(4 + 4 + 4 + 4 + 4 = 16 \ Punkte)$

2A. Lösen Sie die gewöhnliche Differentialgleichung $y' + \sqrt{1 + y^2} = 0$ zum Anfangswert y(0) = -1.



2B. Ein Buch mit 500 Seiten enthält 500 Druckfehler. Bestimmen Sie die Wahrscheinlichkeit, dass sich auf Seite 34 mindestens drei Druckfehler befinden. Runden Sie dabei auf ganze Prozente. *Hinweis:* Approximieren Sie die hier auftretende Binomialverteilung durch eine geeignete Poissonverteilung.

Ein Druckfehler erscheint mit Erfolgswahrscheinlichkeit $p=\frac{1}{500}$ auf Seite 34 unabhängig von allen anderen. Daher ist das Ereignis "k Druckfehler landen auf Seite 34" $B_{500,1/500}$ verteilt. Wir approximieren durch eine geeignete Poissonverteilung. Allgemein ist dies die Verteilung $P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda}$ mit $\lambda=N\,p$. Hier konkret $N\,p=1$. Somit

$$P(k \ge 3) = 1 - P(k = 2) - P(k = 1) + P(k = 0)$$

$$= 1 - e^{-1}(1 + 1 + \frac{1}{2}) \approx 1 - \frac{2.5}{2.7} = \frac{0.2}{2.7}$$

Schriftliches Dividieren ergibt $\frac{0.2}{2.7} = 7.4\%$. Also erhält man $P(k \ge 3) \approx 7\%$ (8% lassen wir auch noch gelten).

2C. Wir betrachten die Differentialgleichung

$$(xe^y - 1) + xy' = 0.$$

Bestimmen Sie einen nur von y abhängigen integrierenden Faktor c(y), ein Potential der exakten Differentialgleichung und die Lösung des Anfangswertproblems mit y(2) = 0.

1. Sei $V(x,y) := (xe^y - 1, x)$ das zugehörige Vektorfeld. Wir bestimmen die Rotation:

$$\begin{pmatrix} \partial_x \\ \partial_y \end{pmatrix} \times \begin{pmatrix} xe^{y-1} \\ x \end{pmatrix} = 1 - xe^y$$

Das Vektorfeld ist also nicht rotationsfrei, d.h. die Differentialgleichung ist nicht exakt.

2. Wir bestimmen einen nur von y abhängigen integrierenden Faktor c(y): das modifizierte Vektorfeld c(y)V(x,y) besitzt die Rotation

$$\begin{pmatrix} \frac{\partial_x}{\partial y} \end{pmatrix} \times \begin{pmatrix} c(y)(xe^y - 1) \\ c(y)x \end{pmatrix} = c(y) (1 - xe^y) - c'(y)(xe^y - 1)$$

Das Verschwinden dieser Rotation ist also gleichbedeutend mit der Differentialgleichung 0 = c(y) + c'(y), welche etwa von $c(y) = e^{-y}$ erfüllt wird.

3. Die Differentialgleichung $x - e^{-y} + xe^{-y}y' = 0$ hat also die selben Lösungen wie die Ausgangsgleichung und ist zusätzlich exakt. Probe:

$$\begin{pmatrix} \partial_x \\ \partial_y \end{pmatrix} \times \begin{pmatrix} x + e^{-y} \\ x e^{-y} \end{pmatrix} = e^{-y} - e^{-y} = 0.$$

- 4. Ein Potential der exakten DG ist die Funktion $f(x,y) := \frac{1}{2}x^2 xe^{-y}$. Probe: $\partial_x f(x,y) = x e^{-y}$ und $\partial_y f(x,y) = xe^{-y}$.
- 5. Wir setzen dazu f(x,y) = d mit einer Konstanten d, welche sich aus der Anfangsbedingung wie folgt berechnet

$$d = \frac{1}{2}2^2 - 2 = 0.$$

Wir erhalten $f(x, y(x)) = \frac{1}{2}x^2 - xe^{-y(x)} = 0$, also $x = e^{-y} \pm e^{-y}$. Das Minuszeichen entspricht der Gleichung x = 0, welche wir nicht nach y auflösen können. Daher wählen wir das Plus und erhalten $y(x) = -\ln(\frac{x}{2})$.

6. Probe: Es gilt y(2) = 0 und weiter $y'(x) = -\frac{1}{2}\frac{2}{x}$. Einsetzen in die Differentialgleichung ergibt

$$(xe^{y} - 1) + xy' = x(\frac{2}{x}) - 1 - \frac{1}{2}x\frac{2}{x}$$

= 2 - 1 - 1 = 0.

2D. Zu welchem der folgenden Vektorfelder $g, f : \mathbb{R}^3 \to \mathbb{R}^3$ existiert ein Potential?

(1)
$$g(x, y, z) = (y, -x, z)$$
 (2) $f(x, y, z) = (x^2, y^3, z^4)$

(2)
$$f(x, y, z) = (x^2, y^3, z^4)$$

Bestimmen Sie ein Potential in den Fällen, wo dieses existiert.

Es ist g(x,y,z) = (y,-x,0) + (0,0,z). Das Vektorfeld (0,0,z) ist offensichtlich rotationsfrei und die Rotation des ebenen Wirbelfeldes (y, -x, 0) ist bekanntlich (0, 0, 2). Aus Linearität folgt rot g = (0, 0, 2), also gibt es kein Potential.

rot f = (0, 0, 0), also existiert ein Potential. \triangleright Man findet dieses, indem man zuerst bei festgehaltenem (y,z) die erste Komponente des Vektorfeldes nach x aufintegriert:

$$F(x, y, z) = \int x^2 dx = \frac{1}{3}x^3 + c(y, z)$$

wobei c(y,z) eine von x unabhängige Funktion in (y,z) ist. Ableiten nach y und Gleichsetzen mit der zweiten Komponente des Vektorfeldes liefert

$$\frac{\partial}{\partial y}F(x,y,z) = \frac{\partial}{\partial y}c(y,z) \stackrel{!}{=} y^3 \Rightarrow c(y,z) = \frac{1}{4}y^4 + \tilde{c}(z)$$

wobei $\tilde{c}(z)$ eine von x und y unabhängige Funktion in z ist. Das Ganze nochmal nach z

$$\frac{\partial}{\partial z}F(x,y,z) = \frac{\mathrm{d}}{\mathrm{d}z}\tilde{c}(z) \stackrel{!}{=} z^4 \Rightarrow \tilde{c}(z) = \frac{1}{5}z^5 + \bar{c}$$

mit einer (richtigen) Konstanten \bar{c} . Also ist

$$F(x, y, z) = \frac{1}{3}x^3 + \frac{1}{4}y^4 + \frac{1}{5}z^5$$

ein Potential. Probe: $\left|\frac{\partial F}{\partial x}\right| = x^2$, $\left|\frac{\partial F}{\partial y}\right| = y^3$, $\left|\frac{\partial F}{\partial z}\right| = z^4$. Daher grad $F = (x^2, y^3, z^4)$.

Aufgabe 3. (2 + 3 + 3 = 8 Punkte) Wir wollen im folgenden annehmen, dass die Lebensdauer T eines Turbinen-Strahlwerks, wie es in einem modernen Düsenflugzeug verwendet wird, exponentialverteilt zum Parameter λ ist, d.h. $P(T > t) = e^{-\lambda t}$, wobei die Zeit t in Tausend Betriebsstunden berechnet ist.

3A. Es ist bekannt, dass ein Triebwerk im Schnitt etwa 10.000 Stunden (d.h. 10 Tausend Be-

triebstunden) durchhält. Bestimmen Sie den zugehörigen Parameter: $\lambda =$

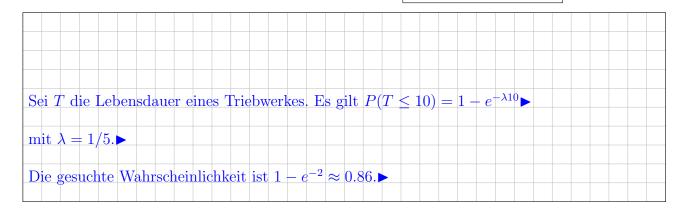
0.1

2

3B. Sei $\lambda = 1/5$. Mit welcher Wahrscheinlichkeit p hält das Triebwerk weniger als 10.000

Stunden? Runden Sie auf zwei Nachkommastellen. p =

0.86



-0

3C. Eine Fluggesellschaft benötigt Triebwerke, die mit 90%-tiger Wahrscheinlichkeit auch nach 5.000 Einsatzstunden noch funktionieren sollen. Bestimmen Sie den zugehörigen Parameter:

$$\lambda = \boxed{0.022}$$

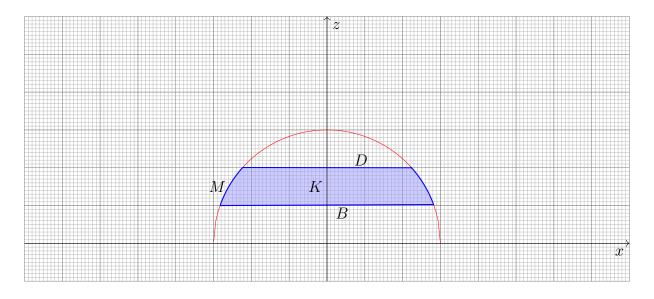
(Runden Sie auf drei Nachkommastellen.)

Aufgabe 4. Dreidimensionale Integrale und Integralsätze (2 + 3 + 4 + 3 = 12 Punkte)

Der Körper $K \subset \mathbb{R}^3$ und das Vektorfeld $f: \mathbb{R}^3 \to \mathbb{R}^3$ seien gegeben durch

$$K = \left\{ (x, y, z) \in \mathbb{R}^3 \mid \begin{array}{c} x^2 + y^2 + z^2 \le 9 \\ 1 \le z \le 2 \end{array} \right\} \quad \text{und} \quad f(x, y, z) = \left(x - z, 2x + y, 4(x^2 + y^2) \right).$$

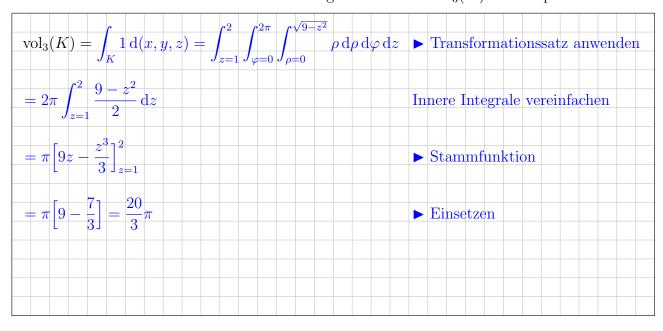
4A. Skizzieren Sie den Schnitt von K mit der x-z-Ebene, also mit der Ebene y=0:



Parametrisieren Sie den Körper K in Zylinderkoordinaten:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \Phi \begin{pmatrix} \rho \\ \varphi \\ z \end{pmatrix} = \begin{pmatrix} \rho \cos \varphi \\ \rho \sin \varphi \\ z \end{pmatrix} \quad \text{mit} \quad \begin{cases} 1 \le z \le 2, & 0 \le \varphi \le 2\pi \\ 0 \le \rho \le \boxed{\sqrt{9 - z^2}} \end{cases}$$

4B. Berechnen Sie mit dieser Parametrisierung das Volumen $vol_3(K)$ des Körpers K:



3

4C. Die Randfläche ∂K besteht aus dem Boden B mit z=1, dem Deckel D mit z=2 und dem Mantel M. Berechnen Sie den Fluss von f aus K heraus durch D:

$$I_D = \int_{s \in D} f(s) \cdot \mathrm{d}S = \int_{\varphi=0}^{2\pi} \int_{\rho=0}^{\sqrt{5}} 4\rho^2 \cdot \rho \, \mathrm{d}\rho \, \mathrm{d}\varphi \quad \blacktriangleright \text{ Parametrisierung des Deckels}$$

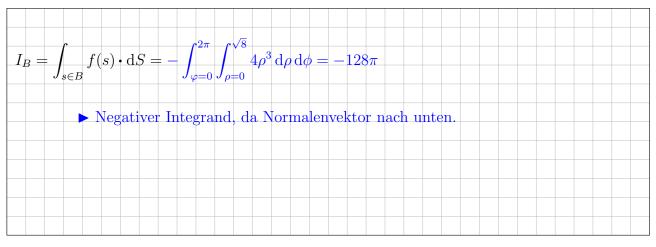
$$= 2\pi \left[\rho^4 \right]_{\rho=0}^{\sqrt{5}} = 50\pi \quad \blacktriangleright \text{ Stammfunktion, Grenzen einsetzen}$$

$$Erläuterung: \text{ Für den Kreis } D \text{ sind Normalenvektor und Integral besonders einfach.}$$

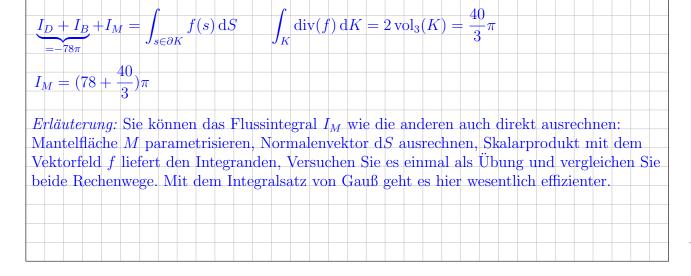
$$\text{Zur Übung können Sie nochmal die Flächenparametrisierung } \Phi_D \text{ explizit ausschreiben und den Normalenvektor } \partial_\rho \Phi_D \times \partial_\varphi \Phi_D \text{ ausrechnen. Das Ergebnis entspricht der Anschauung.}$$

$$\text{Diese Standardrechnungen können Sie hier routiniert und effizient einsetzen.}$$

Folgern Sie den Fluss I_B des Vektorfeldes f aus K heraus durch den Boden B:

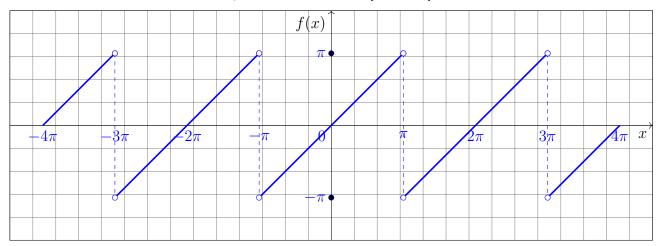


4D. Berechnen Sie den Fluss I_M des Vektorfeldes f aus K heraus durch den Mantel M:



Aufgabe 5. Fourier-Reihen (2 + 3 + 2 + 3 = 10 Punkte) Die Funktion $f: \mathbb{R} \to \mathbb{R}$ sei 2π -periodisch und ungerade mit f(x) = x für $0 < x < \pi$.

5A. Skizzieren Sie die Funktion f auf dem Intervall $[-4\pi, 4\pi]$.



Bestimmen Sie den Grenzwert der Fourier-Reihe $f_n(x) = \sum_{k=-n}^n c_k e^{\mathrm{i}kx}$ von f im Punkt $x = \pi$:

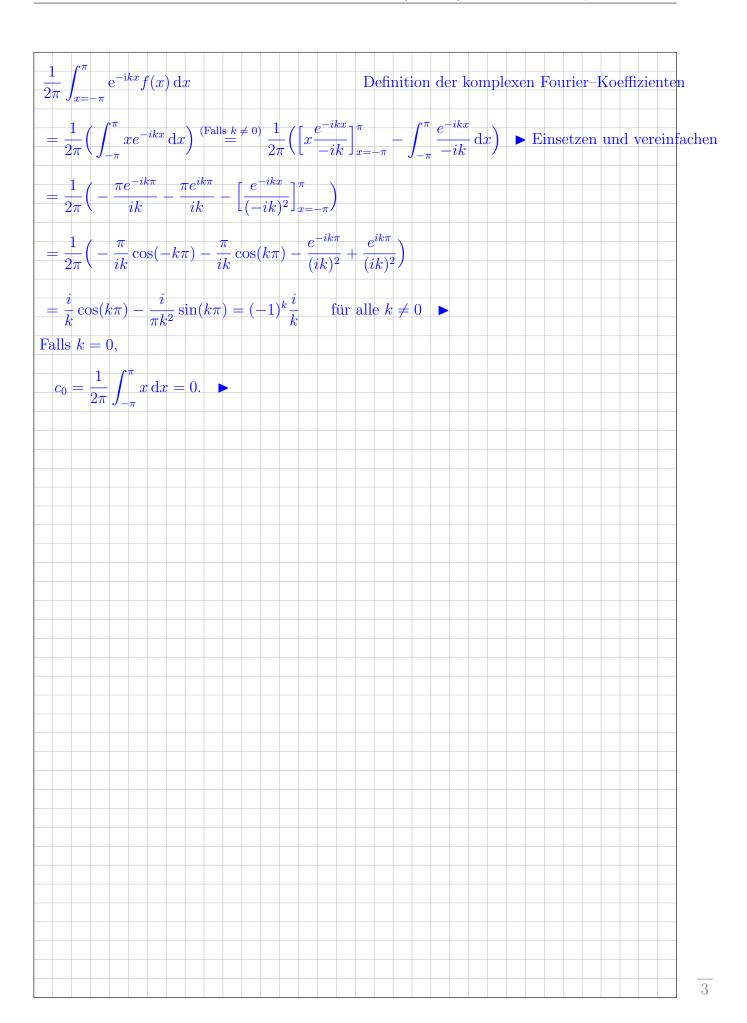
$$\lim_{n \to \infty} f_n(\pi) = \frac{1}{2}(\pi - \pi) = 0$$

Dank Dirichlet-Kriterium!

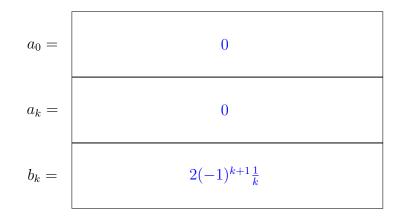
2

5B. Bestimmen Sie die Koeffizienten c_k der komplexen Fourier–Reihe $f(x) \sim \sum_{k \in \mathbb{Z}} c_k \, \mathrm{e}^{\mathrm{i} kx}$:

für $k \neq 0$.

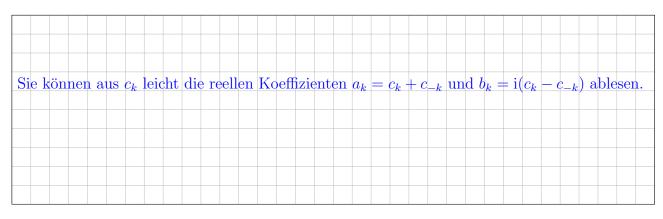


5C. Bestimmen Sie die Koeffizienten a_k und b_k der reellen Fourier-Reihe $f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx) + b_k \sin(kx)$:



für $k \ge 1$,

für $k \ge 1$.



2

5D. Betrachten Sie jetzt die Funktion $F(x) = \int_0^x f(t)dt$. Bestimmen Sie die Koeffizienten A_k und B_k ihrer reellen Fourier-Reihe: $F(x) \sim \frac{A_0}{2} + \sum_{k=1}^{\infty} A_k \cos(kx) + B_k \sin(kx)$:

$$A_0 = \frac{\frac{1}{3}\pi^2}{A_k = 2(-1)^k \frac{1}{k^2}}$$
 für $k \ge 1$,
$$B_k = 0$$
 für $k \ge 1$.

Da f ungerade ist $\Longrightarrow F$ ist gerade. Es folgt $B_k = 0$ für alle $k \ge 0$.

$$f(x) \sim 2\left(\sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x - \frac{1}{4}\sin 4x \dots\right)$$

Aus $F(x) = \int_0^x f(t)dt$ erhalten wir dank Integrationsregel

$$F(x) \sim \frac{A_0}{2} - 2\left(\cos x - \frac{1}{2^2}\cos 2x + \frac{1}{3^2}\cos 3x - \frac{1}{4^2}\cos 4x + \ldots\right)$$

Die nullte Fourier-Koeffizient $\frac{A_0}{2}$ ist genau $C_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(x) dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{x^2}{2} dx = \frac{\pi^2}{6}$ $\Rightarrow A_0 = \frac{1}{3}\pi^2$.

Aufgabe 6. Differentialgleichungssystem (4 + 3 + 3 + 2 = 12 Punkte)

Wir betrachten das lineare Differentialgleichungssystem y'(t) = Ay(t) + b(t) mit AWP:

$$\begin{cases} y_1'(t) = -2y_1(t) + y_2(t) + e^{-t}, & y_1(0) = 1 \\ y_2'(t) = -y_1(t) - 2e^{-t}. & y_2(0) = 2. \end{cases}$$

6A. Bestimmen Sie die Matrix A des zugehörigen homogenen Differentialgleichungssystem, ihr charakteristisches Polynom und die Eigenwerte.

$$A = \begin{bmatrix} -2 & 1 \\ -1 & 0 \end{bmatrix} \blacktriangleright , P(\lambda) = \begin{bmatrix} \lambda^2 + 2\lambda + 1 \blacktriangleright \end{bmatrix}, \lambda_1 = \begin{bmatrix} -1 \blacktriangleright \end{bmatrix}, \lambda_2 = \begin{bmatrix} -1 \blacktriangleright \end{bmatrix}.$$

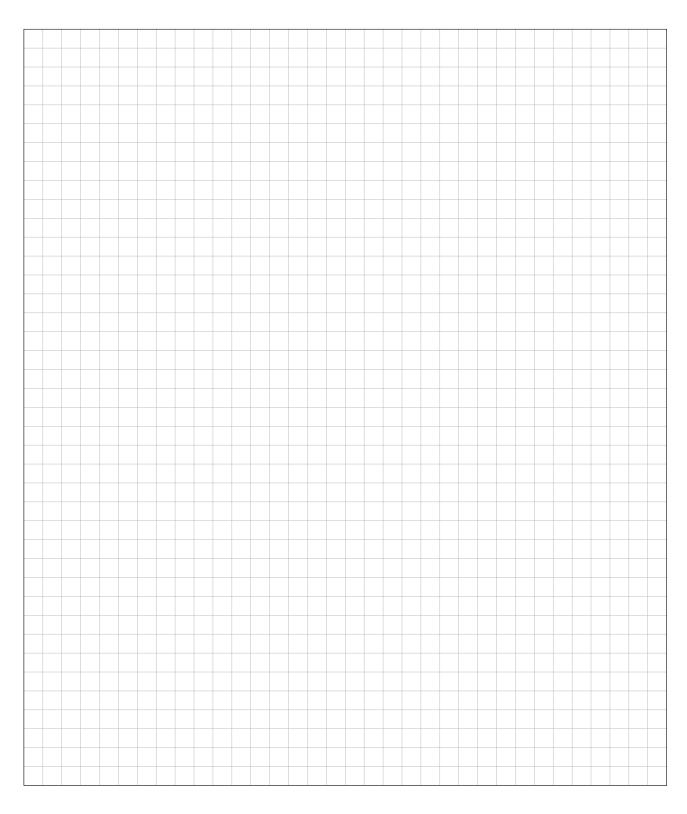
Es gilt $P(\lambda)=(-2-\lambda)(-\lambda)+1=\lambda^2+2\lambda+1=(\lambda+1)^2.$ Daraus liest man die doppelte Nullstelle $\lambda_1=\lambda_2=-1$ ab.

Im folgenden geben wir Ihnen die beiden Vektoren $v := \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ und $w := \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ vor.

6B. Bestimmen Sie eine Fundamentalmatrix des homogenen Differentialgleichungssystems. Hinweis: Zeigen Sie zunächst, dass Av = -v und Aw = -w + v gilt.

$$y_1(t) = \boxed{e^{-t}v = e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}} \quad , y_2(t) = \boxed{e^{-t}(tv + w) = e^{-t} \begin{pmatrix} t \\ t + 1 \end{pmatrix}} \quad .$$

$$Y(t) = \boxed{e^{-t} \begin{pmatrix} 1 & t \\ 1 & t + 1 \end{pmatrix}} \quad .$$



6C. Bestimmen Sie eine partikuläre Lösung $y_p(t)$ durch Variationen der Konstanten.

$$y_p(t) = e^{-t} \begin{pmatrix} -\frac{3}{2}t^2 + t \\ -\frac{3}{2}t^2 - 2t \end{pmatrix}$$

Machen Sie die Probe.

Durch Variation der Konstanten ist eine partikuläre Lösung gegeben durch

$$y_p(t) = Y(t) \int_{\tau=0}^{t} Y(\tau)^{-1} b(\tau) d\tau$$

wobei $b(\tau) = \begin{pmatrix} e^{-\tau} \\ -2e^{-\tau} \end{pmatrix}$ und die Inverse $Y(t)^{-1} = e^t \begin{pmatrix} t+1 & -t \\ -1 & 1 \end{pmatrix}$. Dann

$$Y(\tau)^{-1}b(\tau) = \begin{pmatrix} 3\tau + 1 \\ -3 \end{pmatrix}$$

und

$$y_p(t) = Y(t) \int_{\tau=0}^t Y(\tau)^{-1} b(\tau) d\tau = Y(t) \int_{\tau=0}^t {3\tau+1 \choose -3} d\tau$$

$$= Y(t) \begin{pmatrix} \frac{3}{2}t^2 + t \\ -3t \end{pmatrix} = e^{-t} \begin{pmatrix} -\frac{3}{2}t^2 + t \\ -\frac{3}{2}t^2 - 2t \end{pmatrix} \triangleright$$

Die Probe:

$$y'(t) = -e^{-t} \begin{pmatrix} -\frac{3}{2}t^2 + t \\ -\frac{3}{2}t^2 - 2t \end{pmatrix} + e^{-t} \begin{pmatrix} -3t + 1 \\ -3t - 2 \end{pmatrix} = e^{-t} \begin{pmatrix} \frac{3}{2}t^2 - 4t + 1 \\ \frac{3}{2}t^2 - t - 2 \end{pmatrix}$$

$$Ay(t) = e^{-t} \begin{pmatrix} -2 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} -\frac{3}{2}t^2 + t \\ -\frac{3}{2}t^2 - 2t \end{pmatrix} = e^{-t} \begin{pmatrix} \frac{3}{2}t^2 - 4t \\ \frac{3}{2}t^2 - t \end{pmatrix}$$

$$b(t) = e^{-t} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

Man erkennt nun, dass die Gleichung y'(t) = Ay(t) + b(t) erfüllt ist

6D. Bestimmen Sie die allgemeine Lösung und die Lösung des Anfangswertproblems

$$y(t) = e^{-t} \begin{pmatrix} -\frac{3}{2}t^2 + t \\ -\frac{3}{2}t^2 - 2t \end{pmatrix} + c_1 e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} t \\ t+1 \end{pmatrix},$$

$$y_{\text{AWP}}(t) = e^{-t} \begin{pmatrix} -\frac{3}{2}t^2 + 2t + 1 \\ -\frac{3}{2}t^2 - t + 2 \end{pmatrix}$$

Die Allgemeine Lösung y(t) berechnet sich nach der Formel $y(t) = y_p(t) + c_1y_1(t) + c_2y_2(t)$ wobei $y_1(t)$ und $y_2(t)$ die zuvor in Teil b berechneten Spalten der Fundamentalmatrix Y(t) sind. Daher folgt $y(t) = y_p(t) + c_1y_1(t) + c_2y_2(t)$

$$y(t) = e^{-t} \begin{pmatrix} -\frac{3}{2}t^2 + t \\ -\frac{3}{2}t^2 - 2t \end{pmatrix} + c_1 e^{-t} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} t \\ t+1 \end{pmatrix}$$

Für das AWP muss $y(0) = \begin{pmatrix} y_1(0) \\ y_2(0) \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ gelten. Da $y_p(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ ist \Longrightarrow

$$y(0) = Y(0) \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$
. Dann ist $\begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = Y(0)^{-1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Aufgabe 7. Charaktertest (2 + 2 + 3 = 7 Punkte)

Zu lösen ist für $u: \mathbb{R}^2 \to \mathbb{R}: (x,y) \mapsto u(x,y)$ die partielle Differentialgleichung

$$2\partial_y u + (u+y)\,\partial_x u = u$$

für alle $x, y \in \mathbb{R}$,

$$u(x,0) = x$$

für y = 0 und alle $x \in \mathbb{R}$.

7A.

Geben Sie das charakteristische Differentialgleichungssystem zu u(x(s), y(s)) = z(s) an:

$$x'(s) = \left| z(s) + y(s) \right|$$

$$x(0) = x_0,$$

y'(s) = 2,

$$y(0) = 0,$$

$$z'(s) = \begin{vmatrix} z(s) \rangle$$

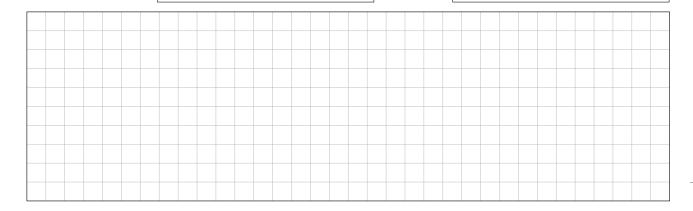
$$z(0) = x_0.$$

7B.

Bestimmen Sie damit die zugehörige Charakteristik $s \mapsto (x(s), y(s), z(s))$:

$$y(s) = 2s, \quad z(s) = \begin{vmatrix} x_0 & e^s \\ & & \end{vmatrix}$$

$$, \quad x(s) = \begin{vmatrix} x_0 & e^s + s^2 \end{pmatrix}$$



2

7C.

Bestimmen Sie die gesuchte Lösung und machen Sie die Probe: u(x,y) =

 $x - y^2/4$

Wegen y(s) = 2s folgt s = y/2. Aus $x(s) = x_0e^s + s^2$ erhält man $x_0 = e^{-s}(x - y^2/4)$. Substituieren in $u(s, x_0) = z(s, x_0) = x_0 e^s$ liefert $u(x, y) = e^{-s}(x - y^2/4)e^s = x - y^2/4$. Probe: Wir haben $\partial_y u(x, y) = -\frac{1}{2}y$ und $\partial_x u(x,y) = 1$. Daher $2\partial_y u(x,y) + (u+y)\partial_x u(x,y) = -y+u+y=u$

Diese Seite ist nur zufällig leer und muss es nicht bleiben.