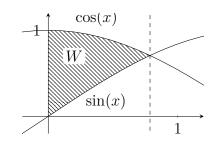
Aufgabe 1 (9 Punkte)

Gegeben Sei die Fläche $W\subseteq \mathbb{R}^2$ und das Vektorfeld $g:\mathbb{R}^2\to\mathbb{R}^2$ durch

$$W = \left\{ (x, y) \in \mathbb{R}^2 : 0 \le x \le 1, \sin x \le y \le \cos x \right\},\$$

$$g(x, y) = \begin{pmatrix} 4x^2 + 3x - y \\ e^{5y} + 4xy \end{pmatrix}.$$



- a) (3 Punkte) Berechnen Sie den Flächeninhalt F(W).
- b) (2 Punkte) Berechnen Sie div g und rot g.
- c) (4 Punkte) Berechnen Sie $Z(g,\partial W)$ unter Verwendung des Satzes von Green.

Lösung

a) Für die rechte Grenze des Gebiets lößt man $\sin x = \cos x, 0 \le x \le 1$ zu $x = \frac{\pi}{4}$ und rechnet dann

$$F(W) = \iint_{W} 1 \, dy \, dx = \int_{0}^{\frac{\pi}{4}} \int_{\sin x}^{\cos x} dy \, dx$$
$$= \int_{0}^{\frac{\pi}{4}} \cos x - \sin x \, dx$$
$$= [\sin x + \cos x]_{0}^{\frac{\pi}{4}}$$
$$= \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} - 1$$
$$= \sqrt{2} - 1.$$

$$\operatorname{div} g = \frac{\partial}{\partial x} g_1 + \frac{\partial}{\partial y} g_2 = 12x + 5e^{5y} + 3$$
$$\operatorname{rot} g = \frac{\partial}{\partial x} g_2 - \frac{\partial}{\partial y} g_1 = 4y + 1$$

c)

$$Z(g, \partial W) = \iint_{W} \operatorname{rot} g \, dy \, dx$$

$$= \int_{0}^{\frac{\pi}{4}} \int_{\sin x}^{\cos x} 1 + 4y \, dy \, dx$$

$$= \int_{0}^{\frac{\pi}{4}} [y + 2y^{2}]_{\sin x}^{\cos x} \, dx$$

$$= \int_{0}^{\frac{\pi}{4}} \cos x - \sin x + 2(\cos^{2} x - \sin^{2} x) \, dx$$

$$= [\sin x + \cos x]_{0}^{\frac{\pi}{4}} + [\sin 2x]_{0}^{\frac{\pi}{4}}$$

$$= \sqrt{2}$$

Aufgabe 2 (10 Punkte)

Berechnen Sie alle reellen Lösungen der Differentialgleichung

$$y'' + y' = -3e^{2x} + 4x^3 + 20.$$

Lösung

SCHRITT 1: Homogene Gleichung

Das charakteristische Polynom P(X) der Differentialgleichung y'' + y' = 0 ist $P(X) = X^2 + X$.

Die Nullstellen von P sind 0 und -1.

Die allgemeine homogene Lösung f_h ist dann: $f_h(x) = c_1 + c_2 e^{-x}$, mit $c_1, c_2 \in \mathbb{R}$.

SCHRITT 2: Partikuläre Lösung

In einem zweiten Schritt bestimmt man nun irgendeine beliebige (partikuläre) Lösung der gegebenen inhomogenen Differentialgleichung.

Partikuläre Lösung durch Ansatz nach Art der rechten Seite.

Aufgrund des Superpositionsprinzips bekommt man eine partikuläre Lösung f_p von $y'' + y' = -3e^{2x} + 4x^3 + 20$, indem man eine partikuläre Lösung f_{p_1} von $y'' + y' = -3e^{2x}$ und eine partikuläre Lösung f_{p_2} von $y'' + y' = 4x^3 + 20$ bestimmt und diese beiden addiert: $f_p = f_{p_1} + f_{p_2}$.

• Zunächst zu $y'' + y' = -3e^{2x}$ Weil 2 keine Nullstelle von P ist (keine Resonanz), machen wir den Ansatz

$$f_{p_1}(x) = ae^{2x}.$$

Zweimaliges Ableiten ergibt

$$f'_{p_1}(x) = 2ae^{2x},$$

$$f_{p_1}''(x) = 4ae^{2x}.$$

Setzt man dies in die Differentialgleichung ein, so erhält man $6ae^{2x}=-3e^{2x}$ und damit $a=-\frac{1}{2}$. Also

$$f_{p_1}(x) = -\frac{1}{2}e^{2x}.$$

• Jetzt zu $y'' + y' = 4x^3 + 20$:

Weil 0 eine einfache Nullstelle von P ist (Resonanz), machen wir den Ansatz

$$f_{p_2}(x) = x^1(ax^3 + bx^2 + cx + d) = ax^4 + bx^3 + cx^2 + dx$$

Zweimaliges Ableiten ergibt

$$f'_{p_2}(x) = 4ax^3 + 3bx^2 + 2cx + d,$$

$$f''_{p_2}(x) = 12ax^2 + 6bx + 2c.$$

Setzt man dies in die Differentialgleichung ein, so erhält man

$$4ax^{3} + (3b + 12a)x^{2} + (2c + 6b)x + (2c + d) = 4x^{3} + 20$$

und damit
$$a=1,\,3b+12a=0 \Rightarrow b=-4,\,2c+6b=0 \Rightarrow c=12,\,2c+d=20 \Rightarrow d=-4.$$
 Also

$$f_{p_2}(x) = x^4 - 4x^3 + 12x^2 - 4x.$$

SCHRITT 3: Alle reellen Lösungen

In einem dritten und letzten Schritt muss man schließlich noch die oben bestimmte allgemeine homogene Lösung und die oben bestimmte partikuläre Lösung addieren:

$$f(x) = f_h(x) + f_p(x) = c_1 + c_2 e^{-x} - \frac{1}{2} e^{2x} + x^4 - 4x^3 + 12x^2 - 4x$$
 mit $c_1, c_2 \in \mathbb{R}$,

um die gesuchte allgemeine Lösung der inhomogenen Differentialgleichung zu bekommen.

Aufgabe 3 (10 Punkte)

Bestimmen Sie die allgemeine Lösung des homogenen Differentialgleichungssystems

$$y' = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 2 \end{pmatrix} y.$$

Lösung

Aus dem charakteristisches Polynom

$$\chi_A = \det(A - xI_3) = (2 - x)^2 (1 - x)$$

ermittelt man die Eigenwerte 1,2.

Die zugehörigen Eigenvektoren ergeben sich zu jeweils

$$Av_1 = v_1 \implies v_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \qquad Av_2 = 2v_2 \implies v_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Zwei Lösungen ergeben sich daher durch

$$f_1(x) = \begin{pmatrix} 0 \\ e^x \\ 0 \end{pmatrix}, \quad f_2(x) = \begin{pmatrix} 0 \\ 0 \\ e^{2x} \end{pmatrix},$$

Für ein Fundamentalsystem benötigen wir noch eine dritte Lösung. Da wir nur zwei Eigenvektoren ermitteln konnten, ist A nicht diagonalisierbar. Wähle einen dritten Basisvektor v_3 und rechne

$$v_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, Av_3 = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}, A^2v_3 = \begin{pmatrix} 4 \\ 0 \\ -4 \end{pmatrix}$$

Mit dem Gauß-Algorithmus ermittelt sich das Minimalpolynom zu v_3 :

$$g(x) = x^2 - 4x + 4,$$

mit doppelter Nullstelle 2. Die zugehörige Wronskimatrix ist

$$M(x) = \begin{pmatrix} e^{2x} & xe^{2x} \\ 2e^{2x} & e^{2x} + 2xe^{2x} \end{pmatrix}$$

Man ermittelt

$$M(0) = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \implies (M(0)^T)^{-1} = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$$

und damit

$$f_3(x) = (v_3, Av_3)(M(0)^T)^{-1} \begin{pmatrix} e^{2x} \\ xe^{2x} \end{pmatrix} = \begin{pmatrix} e^{2x} \\ 0 \\ -xe^{2x} \end{pmatrix}$$

Alle homogenen Lösungen der Differentialgleichung ergeben sich damit durch

$$f_h(x) = c_1 f_1(x) + c_2 f_2(x) + c_3 f_3(x) = \begin{pmatrix} c_3 e^{2x} \\ c_1 e^x \\ c_2 e^{2x} - c_3 x e^{2x} \end{pmatrix}, \qquad c_1, c_2, c_3 \in \mathbb{R}.$$

Aufgabe 4 (11 Punkte)

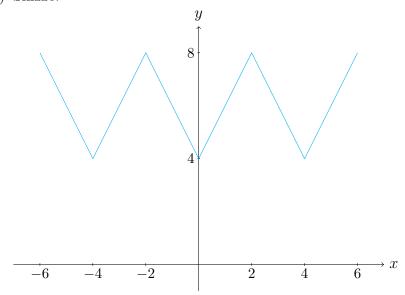
Gegeben sei die 4-periodische Funktion $f: \mathbb{R} \to \mathbb{R}$ durch

$$f(x) := |2x| + 4 \text{ für } x \in (-2, 2].$$

- a) (2 Punkte) Skizzieren Sie den Graphen auf dem Intervall (-6, 6];
- b) (8 Punkte) Bestimmen Sie die reelle Fourierreihe von f.
- c) (1 Punkt) Bestimmen Sie für alle $x \in (-6,6)$ den Grenzwert der Fourierreihe.

Lösung

a) Skizze:



- b) (1) T = 4 und $w = \frac{2\pi}{T} = \frac{\pi}{2}$.
 - (2) Weil f(x) gerade ist, gilt $b_n = 0$ für alle $n \in \mathbb{N}_0$.
 - (3) Für a_0 errechnet man:

$$a_0 = \frac{2}{4} \int_{-2}^{2} f(x)dx = \frac{1}{2} \int_{-2}^{2} (|2x| + 4)dx = \int_{0}^{2} (2x + 4)dx = [x^2 + 4x]_{0}^{2} = 4 + 8 = 12.$$

Die Koeffizienten a_n für n > 0 folgen durch Integration:

$$a_{n} = \frac{2}{4} \int_{-2}^{2} f(x) \cos(nwx) dx = \int_{0}^{2} (2x+4) \cos(\frac{n\pi}{2}x) dx =$$

$$= [(2x+4) \cdot \frac{2}{n\pi} \sin(\frac{n\pi}{2}x)]_{0}^{2} - \int_{0}^{2} 2 \cdot \frac{2}{n\pi} \sin(\frac{n\pi}{2}x) dx$$

$$= 8 \cdot \frac{2}{n\pi} \sin(n\pi) - 4 \cdot \frac{2}{n\pi} \sin(0) + \left[2 \cdot \frac{2}{n\pi} \frac{2}{n\pi} \cos(\frac{n\pi}{2}x)\right]_{0}^{2} =$$

$$= \frac{8}{n^{2}\pi^{2}} (\cos(n\pi) - 1)$$

$$= \frac{8}{n^{2}\pi^{2}} ((-1)^{n} - 1)$$

$$= \begin{cases} \frac{-16}{(2k+1)^{2}\pi^{2}}, & n = 2k+1 \\ 0, & n = 2k. \end{cases}$$

(4) Die Fourierreihe von f ist

$$f(x) \sim 6 + \frac{8}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{n^2} \cos(\frac{n\pi}{2}x)$$
$$\sim 6 - \frac{16}{\pi^2} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} \cos(\frac{(2k+1)\pi}{2}x).$$

c) Die Funktion f ist stetig und stückweise stetig differenzierbar mit endlichen rechts- und linksseitigen Grenzwerten für f und f' in allen Punkten von (-6,6), deshalb konvergiert die Fourierreihe in (-6,6) gegen f(x).